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Abstract

A search for pair production of third-generation scalar leptoquarks decaying to top
quark and τ lepton pairs is presented using proton-proton collision data at a center-
of-mass energy of

√
s = 8 TeV collected with the CMS detector at the LHC and cor-

responding to an integrated luminosity of 19.7 fb−1. The search is performed using
events that contain an electron or a muon, a hadronically decaying τ lepton, and two
or more jets. The observations are found to be consistent with the standard model
predictions. Assuming that all leptoquarks decay to a top quark and a τ lepton, the
existence of pair produced, charge −1/3, third-generation leptoquarks up to a mass
of 685 GeV is excluded at 95% confidence level. This result constitutes the first direct
limit for leptoquarks decaying into a top quark and a τ lepton, and may also be ap-
plied directly to the pair production of bottom squarks decaying predominantly via
the R-parity violating coupling λ′333.
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1 Introduction
Leptoquarks (LQ) are hypothetical particles that carry both lepton (L) and baryon (B) quantum
numbers. They appear in theories beyond the standard model (SM), such as grand unifica-
tion [1–3], technicolor [4], and compositeness [5, 6] models. A minimal extension of the SM
to include all renormalizable gauge invariant interactions, while respecting existing bounds
from low-energy and precision measurements leads to the effective Buchmüller–Rückl–Wyler
model [7]. In this model, LQs are assumed to couple to one generation of chiral fermions, and
to separately conserve L and B quantum numbers. An LQ can be either a scalar (spin 0) or a
vector (spin 1) particle with a fractional electric charge. A comprehensive list of other possible
quantum number assignments for LQs coupling to SM fermions can be found in Ref. [8].

This paper presents the first search for a third-generation scalar LQ (LQ3) decaying into a top
quark and a τ lepton. Previous searches at hadron colliders have targeted LQs decaying into
quarks and leptons of the first and second generations [9–11] or the third-generation in the
LQ3 → bν and LQ3 → bτ decay channels [12–17]. The presented search for third-generation
LQs can also be interpreted in the context of R-parity violating (RPV) supersymmetric mod-
els [18] where the supersymmetric partner of the bottom quark (bottom squark) decays into a
top quark and a τ lepton via the RPV coupling λ′333.

At hadron colliders, such as the CERN LHC, LQs are mainly pair produced through the quan-
tum chromodynamic (QCD) quark-antiquark annihilation and gluon-gluon fusion subproces-
ses. There is also a lepton mediated t(u)-channel contribution that depends on the unknown
lepton-quark-LQ Yukawa coupling, but this contribution is suppressed at the LHC for the pro-
duction of third-generation LQs as it requires third-generation quarks in the initial state. Hence,
the LQ pair production cross section depends only upon the assumed values of the LQ spin and
mass, and upon the proton-proton center-of-mass energy. We consider scalar LQs in the mass
range up to several hundred GeV. The corresponding next-to-leading-order (NLO) pair pro-
duction cross sections and associated uncertainties at

√
s = 8 TeV are taken from the calculation

presented in Ref. [19].

It is customary to denote the branching fractions of LQs into a quark and a charged lepton or a
quark and a neutrino within the same generation as β and 1− β, respectively. Assuming that
third-generation scalar LQs with charge −1/3 exclusively couple to quarks and leptons of the
third-generation, the two possible decay channels are LQ3 → tτ− and LQ3 → bν. In this paper,
we initially assume that β = 1 so that the LQ3 always decays to a tτ pair. The results are then
reinterpreted as a function of the branching fraction with β treated as a free parameter.

We consider events with at least one electron or muon and one τ lepton where the τ lepton
undergoes a one- or three-prong hadronic decay, τh → hadron(s) + ντ. In LQ3LQ3 decays, τ
leptons arise directly from LQ decays, as well as from W bosons in the top quark decay chain,
whereas electrons and muons are produced only in leptonic decays of W bosons or τ leptons.
The major backgrounds come from tt+jets, Drell–Yan(DY)+jets, and W+jets production, where
a significant number of events have jets misidentified as hadronically decaying τ leptons. The
search is conducted in two orthogonal selections, labelled as category A and category B. In cat-
egory A, a same-sign µτh pair is required in each event, which suppresses SM backgrounds.
Misidentified τh candidates originating from jets constitute the main background in category
A. Category B utilizes both eτh and µτh pairs with slightly relaxed τ lepton identification cri-
teria without imposing a charge requirement on the lepton pair. This yields a higher signal
acceptance, but a larger irreducible background from SM processes. In order to keep the two
samples statistically independent, events that satisfy the category A criteria are removed from
the category B sample. Figure 1 shows a schematic representation of an LQ3LQ3 decay chain
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Figure 1: One of the LQ3LQ3 decay chains with both same-sign and opposite-sign `τh pairs.
Labels u and d denote up and down type quarks, and ` denotes an electron or a muon.

that can satisfy the requirements for both categories.

The signature for this search is chosen to be `τh+X, where ` denotes an electron or a muon, and
X is two or more jets and any additional charged leptons in category A, or three or more jets
and any additional charged leptons in category B. The additional jet requirement in category B
is beneficial in suppressing background events from dominant SM processes with two jets and
an opposite-sign `τh pair.

2 Reconstruction and identification of physics objects
The CMS apparatus is a multipurpose particle detector with a superconducting solenoid of 6 m
internal diameter, which provides a magnetic field of 3.8 T. Within the volume of the solenoid
are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a
brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections.
Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke out-
side the solenoid. Extensive forward calorimetry complements the coverage provided by the
barrel and endcap detectors. A more detailed description of the CMS detector, together with a
definition of the coordinate system used and the relevant kinematic variables, can be found in
Ref. [20].

The electron, muon, and τ lepton candidates used in this paper are reconstructed using a
particle-flow (PF) event reconstruction technique [21, 22] which reconstructs and identifies sin-
gle particles (muons, electrons, charged/neutral hadrons, and photons) using an optimized
combination of all subdetector information.

Muon candidates are reconstructed from a combined track in the muon system and the track-
ing system [23]. The hadronically decaying τ lepton candidates are reconstructed via the
“hadron-plus-strips” algorithm which combines one or three charged hadrons with up to two
neutral pions that are reconstructed from PF candidates combining tracker and calorimeter in-
formation [24]. Electron candidates are obtained by reconstructing trajectories from hits in the
tracker layers and energy depositions in the electromagnetic calorimeter with a Gaussian sum
filter [25].

Jets are reconstructed by using the anti-kT algorithm [22, 26, 27] to cluster PF candidates with a
distance parameter of ∆R = 0.5 (where ∆R =

√
(∆η)2 + (∆φ)2, η denotes the pseudorapidity

and φ denotes the azimuthal angle in radians). The missing transverse momentum ~pmiss
T is

calculated as a negative vectorial sum of the transverse momenta of all the PF candidates. The
missing transverse energy Emiss

T is defined as the magnitude of the ~pmiss
T vector. Jet energy

corrections are applied to all jets and are also propagated to the calculation of Emiss
T [28].



3

The collisions are selected using a two-tiered trigger system, composed of a hardware based
level-1 trigger and a software based high-level trigger (HLT) [29] running on a computing farm.

The following quantities are constructed using the physics objects described earlier:

• ST is the scalar pT sum of all objects in the event, including muons, hadronically
decaying τ leptons, electrons, jets, and Emiss

T .

• MT(`,~pmiss
T ) is the transverse mass,

√
2p`TEmiss

T (1− cos(∆φ(~pmiss
T , `))), reconstructed

from the given lepton and the ~pmiss
T in the event where ∆φ(~pmiss

T , `) is the difference
in the azimuthal angle between the directions of the missing transverse momentum
and the lepton momentum.

• |̃η| is the pseudorapidity defined as |̃η| = − ln tan (θ̄/2), where θ̄ is the average
absolute polar angle of all electrons, muons, and hadronically decaying τ leptons in
an event as measured from the beam-axis in the lab frame, and is used as a measure
of the event centrality.

3 Data and simulated samples
This analysis uses data collected with the CMS detector at the LHC during proton-proton (pp)
collisions at

√
s = 8 TeV. Proton bunches were separated by 50 ns and the average number of

additional primary vertices in the collision of the two beams in the same proton bunch crossing
was 20 (pileup). The search is conducted using a combination of isolated and non-isolated
single-muon data corresponding to an integrated luminosity of 19.5 fb−1 in category A, and
using isolated single-muon or single-electron data corresponding to an integrated luminosity
of 19.7 fb−1 in category B. The muon triggers require a muon candidate to have pT > 24 GeV
and |η| < 2.1. The electron trigger requires an isolated electron candidate with pT > 27 GeV
and |η| < 2.5.

The LQ signal processes have been simulated using the PYTHIA generator (v6.426) [30]. Single
top quark and top quark pair production have been simulated with POWHEG (v1.0) [31–34].
For the W+jets background, DY+jets processes, and tt production in association with W or Z
bosons, MADGRAPH (v5.1) has been used [35]. Diboson and QCD multijet processes as well as
processes involving Higgs bosons have been generated with PYTHIA, other SM backgrounds
have been simulated with MADGRAPH. The parton shower and hadronization in samples gen-
erated with POWHEG or MADGRAPH has been performed with PYTHIA. In case of MADGRAPH,
the matching to PYTHIA has been done with the MLM scheme [36]. In all of the generated sam-
ples, τ lepton decays were simulated via TAUOLA [37] and the response of the CMS detector
has been simulated with GEANT4 [38]. The POWHEG samples are produced with the CT10 [39]
parton distribution function (PDF), all other samples have been generated using CTEQ6L1 [40]
PDF set. The Monte Carlo (MC) simulated events are re-weighted to account for differences
in trigger and lepton reconstruction efficiencies, pileup modeling, and jet/missing transverse
energy response of the detector. The simulated events are normalized using next-to-next-to-
leading-order (NNLO) (W+jets, DY+jets [41], tt+jets [42], WH, ZH [43]), approximate NNLO (t,
tW [44]), NLO (diboson [45], ttZ [46], ttW [46, 47], ttH [48, 49], triboson [50]), or leading-order
(W±W±qq, ttWW, Wγ∗, QCD multijet [30, 35]) cross sections at

√
s = 8 TeV.

The characteristics of the simulated tt+jets and W+jets events have been found to contain dis-
crepancies when compared with measurements of the pT spectrum of top quarks [51] and the
leading jet [52], respectively. Re-weighting factors, parametrized as functions of the respective
pT distributions, are applied to the simulated events to correct for these discrepancies. The
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Table 1: Summary of the search strategies in event categories A and B.
Category A Category B

Lepton selection Same-sign µτh pair µτh or eτh pair
(category A events are removed)

Jet selection At least two jets At least three jets

Emiss
T requirement No Emiss

T requirement Emiss
T > 50 GeV

ST and τ lepton pT Optimized for each LQ ST > 1000 GeV, pτ
T > 20 GeV

requirements mass hypothesis

Background estimation
Main component containing Estimated via simulation, corrections
misidentified muons & τ leptons applied for τ lepton misidentification
estimated using data events rate and top quark and W pT distributions

Search regions 2 search regions binned in |̃η|
8 search regions in 4 τ lepton pT regions
for µτh and eτh channels

correction factors for tt+jets [51] range up to 30% whereas the correction factors for the W+jets
samples vary between 8% and 12%.

4 Event selection
A summary of the search regions, selection criteria, and the methods used to determine back-
ground contributions for categories A and B is given in Table 1.

4.1 Event selection in category A

In category A, two selections, denoted as loose and tight, are defined for the muon and τ lepton
candidates, which differ only in the thresholds of the isolation requirements. The tight selec-
tions are applied to define the signal region, and the loose selections are used in the estimation
of backgrounds as defined in Section 5.1.

Muon candidates are required to have pT > 25 GeV and |η| < 2.1. The loose muon selection
has no isolation requirement, whereas the tight muon selection requires the scalar pT sum of all
PF candidates in a cone of radius ∆R = 0.4 around the muon to be less than 12% of the muon
pT. The muon kinematic and isolation thresholds are chosen to match the trigger requirements
used in selecting the events.

Hadronically decaying τ lepton candidates are required to satisfy pT > 20 GeV and |η| < 2.1.
For the loose τ lepton selection, the scalar pT sum of charged hadron and photon PF candidates
with pT > 0.5 GeV in a cone of radius ∆R = 0.3 around the τ lepton candidate is required to
be less than 3 GeV. For the tight τ lepton selection, a more restrictive isolation requirement is
applied with a cone of radius ∆R = 0.5 and a threshold value of 0.8 GeV [24]. All τh candi-
dates are required to satisfy a requirement that suppresses the misidentification of electrons
and muons as hadronically decaying τ leptons [24].

Electron candidates are required to have pT > 15 GeV and |η| < 2.5. The ratio of the scalar pT
sum of all PF candidates in a cone of radius ∆R = 0.3 around the electron object, relative to the
electron pT, is required to be less than 15%.

All muon, electron, and τh candidates are required to be separated by ∆R > 0.3 from each
other. In addition, the separation between the muon and τ lepton candidates and the nearest
jet to which they do not contribute is required to be ∆R(µ, j)min > 0.5 and ∆R(τ, j)min > 0.7
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respectively. This requirement is imposed in order to reduce the impact of QCD jet activity on
the respective isolation cones.

Jet candidates are required to have pT > 40 GeV, |η| < 3. Jets overlapping with the electron,
muon, and τh candidates within a cone of ∆R = 0.5 are not considered.

Each event is required to contain a same-sign µτh pair, chosen among the muon and τh lepton
candidates satisfying the loose selection criteria. If the event contains more than one µτh pair,
the same-sign pair with the largest scalar sum pT is selected. The selected µτh pair is then
required to satisfy the tight selection criteria. Events failing the tight selection criteria on one
or both leptons are utilized in the estimation of backgrounds described in Section 5.1.

For the signal selection, same-sign µτh events are required to have ST > 400 GeV and two
or more jets. Events containing an opposite-sign dimuon pair with an invariant mass within
10% of the Z boson mass are vetoed. In order to exploit a feature of the signal model that
produces the LQ3 pair dominantly in the central region, the search is split into two channels
with |̃η| < 0.9 (central) and |̃η| ≥ 0.9 (forward). Furthermore, a 2D optimization is performed
using the simulated samples for the determination of selection criteria in the (ST,pτ

T) plane for
each LQ3 mass hypothesis in the range of 200–800 GeV. The pτ

T requirement is only applied
to the τ lepton candidate that is a part of the selected same-sign µτh pair. The optimization is
accomplished by maximizing the figure of merit given in Eq. (1) [53]:

χ(pτ
T, ST) =

ε(pτ
T, ST)

1 +
√

B(pτ
T, ST)

(1)

where ε is the signal efficiency and B is the number of background events. The (ST,pτ
T) thresh-

olds have been optimized in the central channel and applied identically in the forward channel.
These optimized selections and the corresponding efficiencies as a function of the LQ3 mass are
presented later, in Section 6.

A signal-depleted selection of events with a same-sign µτh pair, created by vetoing events with
more than one jet, is used to check the performance and normalization of the simulated back-
ground samples. In order to reduce the QCD multijet background contribution, an additional
requirement of MT(µ, Emiss

T ) > 40 GeV is imposed using the muon candidate in the selected
same-sign µτh pair. Figure 2 illustrates the agreement between data and simulation in the |̃η|
and ST distributions, which is found to be within 20%.

4.2 Event selection in category B

In category B, muon candidates are required to have pT > 30 GeV and |η| < 2.1. The muon
isolation requirement follows the tight muon selection defined for category A.

Hadronically decaying τ leptons must satisfy pT > 20 GeV and |η| < 2.1. For τh candidates
a medium isolation requirement is used, where the scalar pT sum of PF candidates must not
exceed 1 GeV in a cone of radius ∆R = 0.5. As in category A, τh candidates must satisfy the
requirement discriminating against misreconstructed electrons and muons.

Electron candidates are required to have pT > 35 GeV and |η| < 2.1. The electron isolation
requirement follows the description in category A, but with a tighter threshold at 10% in order
to match the trigger isolation requirements in the eτh channel.

Jets are required to have pT > 30 GeV, |η| < 2.5, and those overlapping with τh candidates
within a cone of ∆R = 0.5 are ignored. Furthermore, τ leptons that overlap with a muon, and
electrons that overlap with a jet within a cone of ∆R = 0.5 are not considered.
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Each event is required to have at least one electron or muon and one τh candidate. Events
containing muons are vetoed in the eτh channel. Events satisfying the category A selection
criteria are also vetoed, thus in the case of the µτh selection, category B mostly consists of
events with opposite-sign µτh pairs.

In addition, events are required to have ST > 1000 GeV, Emiss
T > 50 GeV, and at least three

jets, where the leading and subleading jets further satisfy pT > 100 and 50 GeV, respectively.
The analysis in category B is performed in four search regions defined as a function of the
transverse momentum of the leading τh candidate: 20 < pτ

T < 60 GeV, 60 < pτ
T < 120 GeV,

120 < pτ
T < 200 GeV, and pτ

T > 200 GeV. Since events with eτh and µτh pairs are separated, this
selection leads to eight search regions. The two low-pτ

T regions are mainly used to constrain the
SM background processes, whereas the signal is expected to populate the two high-pτ

T regions.
The selections on ST, the momenta of the three jets, and Emiss

T have been optimized with respect
to the expected limits on the signal cross section obtained in the statistical evaluation of the
search regions as described in Section 6.

A signal-depleted selection is used to check the performance of the simulated background sam-
ples in category B. In this selection, events with `τh pairs are required to have Emiss

T < 50 GeV
and at least two jets with pT > 50 GeV, |η| < 2.5. Figure 3 shows that in general the agreement
between data and simulation is within the statistical uncertainties in the leading pτ

T distribu-
tions. In the eτh channel, a small excess in the pT distribution is observed around 150 GeV.
As the other kinematic distributions in the signal-depleted region show no other significant
deviations, the excess is assumed to be a statistical fluctuation.
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Figure 2: Comparison between data and simulation in the |̃η| (left) and ST (right) distributions
using the signal-depleted selection of events in category A with a same-sign µτh pair. Other
backgrounds refer to contributions predominantly from processes such as diboson and single
top quark production, as well as QCD multijet and other rare SM processes detailed in Sec-
tion 3. The hatched regions in the distributions and the shaded bands in the Data/MC ratio
plots represent the statistical uncertainties in the expectations. The data-simulation agreement
is observed to be within 20%, and is assigned as the normalization systematic uncertainty for
the tt+jets, DY+jets and diboson contributions in the signal region.
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Figure 3: Comparison between data and simulation in the leading τ lepton pT distributions
using the signal-depleted selection of events in category B in the µτh channel (left) and in the
eτh channel (right). Other backgrounds refer to contributions predominantly from processes
such as diboson and single top quark production, but also include QCD multijet and rare SM
processes detailed in Section 3. The hatched regions in the distributions and the shaded bands
in the Data/MC ratio plots represent the statistical uncertainties in the expectations.

5 Backgrounds
For this analysis, prompt leptons are defined to be those that come from the decays of W
bosons, Z bosons or τ leptons, and are usually well isolated. Leptons originating from semilep-
tonic heavy-flavor decays within jets and jets misreconstructed as leptons are both labelled as
misidentified leptons, and generally are not isolated. In category A, the expected same-sign
background events are mostly due to misidentified leptons, while category B has significant
additional prompt-prompt contributions. In accordance with the expected background com-
positions, data events are used to estimate the dominant misidentified lepton backgrounds in
category A, eliminating the need to evaluate the simulation based systematic uncertainties,
whereas the prompt-prompt backgrounds in category B require the consideration of these un-
certainties. Simulated samples corrected for τ lepton misidentification rates are used for the
estimation of the backgrounds in category B.

5.1 Backgrounds in category A

The same-sign dilepton requirement yields a background which mainly consists of events that
contain misidentified leptons (especially jets misidentified as τ leptons). These events come
from semileptonic tt+jets and W+jets processes in approximately equal proportions. Smaller
background contributions result from SM processes with genuine same-sign dileptons, such
as diboson, ttW, ttZ, and W±W±qq events, and opposite-sign dilepton events in which the τh
charge has been misidentified, such as DY+jets and fully leptonic tt+jets events. Events with
misidentified leptons contribute up to 90% of the total background, depending on the set of ST
and τ lepton pT requirements, and are especially dominant in selections for MLQ3 ≤ 400 GeV.
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5.1.1 Lepton misidentification

Background contributions due to misidentified leptons are estimated using the observed data
via a “matrix method” [54]. For a given set of selection requirements, four combinations are
defined based on the selection quality of the selected same-sign µτh pair. Events in which
both leptons satisfy the tight selection requirements are classified as TT events, whereas those
with both leptons failing the tight selection while satisfying the loose selection requirements
are classified as LL events. Similarly, events with only the muon or the τh candidate satisfying
the tight selection and with the other lepton satisfying the loose selection but failing the tight
selection requirements are labeled as TL or LT events, respectively, where the muon is denoted
first in the labeling.

The probabilities with which prompt (p) and misidentified (m) muon and τh candidates pass a
tight selection, given that they satisfy a loose selection, are measured as a function of the lepton
pT in regions of ST, lepton |η|, and ∆R(µ, j)min or ∆R(τ, j)min. The TT events constitute the
search region, whereas TL, LT, and LL events, together with the prompt and misidentification
probabilities, are used to calculate the misidentified lepton contributions to the signal region,
NmisID

TT , as given in Eqs. (2) and (3).
NMM
NMP
NPM
NPP

 =
1

(pµ −mµ)(pτ −mτ)


pµ·pτ −pµ· p̂τ − p̂µ·pτ p̂µ· p̂τ

−pµ·mτ pµ·m̂τ p̂µ·mτ − p̂µ·m̂τ

−mµ·pτ mµ· p̂τ m̂µ·pτ −m̂µ· p̂τ

mµ·mτ −mµ·m̂τ −m̂µ·mτ m̂µ·m̂τ




NLL
NLT
NTL
NTT

 , (2)

NmisID
TT = mµmτ NMM + mµ pτ NMP + pµmτ NPM. (3)

N denotes the number of events in a given combination, and MM, MP, PM, and PP labels de-
note the double-misidentified, muon misidentified, τh misidentified, and double-prompt com-
binations, respectively. The complementary prompt probability is given as p̂ = 1− p, and the
complementary misidentification probability is given as m̂ = 1−m.

Muon and τ lepton prompt probabilities are measured in DY+jets enhanced data regions with
Z → µµ and Z → ττ → µτh decays, respectively, and in simulated tt+jets, W+jets and LQ3
events. For the τ lepton misidentification probability measurements, a W(→ µν)+jets enriched
data set with additional τh candidates is used. A QCD multijet enhanced data set with a single
muon candidate is used for the muon misidentification probability measurements. In simu-
lated samples, the τ lepton misidentification probability measurement is conducted in W+jets,
tt+jets, and LQ3 samples, while the muon misidentification probability measurement is made
in QCD multijet, tt+jets, and LQ3 samples.

The individual prompt and misidentification probability measurements conducted using sim-
ulated samples are combined into a single value for each of the p and m bins. For each of these,
an average value and an associated uncertainty is calculated to account for the process de-
pendent variations. These simulation based values are then combined with correction factors
derived from the p and m measurements in data, to account for any bias in the simulated detec-
tor geometry and response, providing the values used in Eqs. (2) and (3). The resultant muon
prompt probabilities vary from (70± 3)% to (95± 3)% for low and high pT muons, whereas
τ lepton prompt probabilities are around (60± 6)%. The muon and τ lepton misidentification
probabilities are measured to be about (1± 1)% and (14± 2)%, respectively.

The matrix method yields consistent results for the misidentification backgrounds when ap-
plied to a signal-depleted selection of events in data and to simulated events in the signal
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region. The expected yields are in agreement with the observations within 1.5 standard devia-
tions in both selections.

5.1.2 Charge misidentification and irreducible backgrounds

The background contributions due to lepton charge misidentification and irreducible processes
with same-sign µτh pairs are estimated directly from the simulated samples. These prompt-
prompt contributions are calculated by requiring a match (∆R < 0.15) between the recon-
structed lepton candidate and a generator-level object of the same kind without any require-
ment on the charge. The charge misidentification backgrounds are dominated by τh candidates,
and these backgrounds contribute to 2–3% of the total expected backgrounds in selections for
MLQ3 ≤ 400 GeV, whereas are negligible in those for higher LQ3 masses.

5.2 Backgrounds in category B

In category B, major background processes are tt+jets, W+jets, and DY+jets events. Smaller
contributions come from single top quark, diboson, ttZ, and QCD multijet events. Contribu-
tions from prompt-prompt `τh pairs are mainly expected in fully leptonic tt+jets events, as well
as DY+jets events with Z → ττ → `τh decays and diboson events. In all other processes,
the τh candidates are expected to originate from misidentified jets. The misidentified electron
and muon contributions have been found to be negligible after applying isolation and Emiss

T
requirements. The background estimation in category B is obtained from simulated samples
with various corrections applied to account for differences between data and simulation in the
reconstruction and identification of misidentified τ lepton candidates.

The τ lepton misidentification rate is defined as the probability for a misidentified τ lepton can-
didate originating from a jet to satisfy the final τ lepton identification criteria used in the analy-
sis. The corresponding correction factor for the simulation is defined as the ratio of the data and
the simulation-based rates. The misidentification rates in data and simulation are measured in
W(→ `ν)+jets enriched events, containing at least one τ lepton candidate. The τ lepton can-
didate is used as a misidentified probe, and the results are parametrized as a function of the τ
lepton pT. Additional parametrizations, such as ST, jet multiplicity, and ∆R(τ, j)min, reveal no
further deviations between the data and simulation. Thus a one-dimensional parametrization
as a function of the τ lepton pT is used to describe any discrepancy between data and simu-
lation. A small discrepancy is observed in the distribution of scale factors as a function of the
τ lepton η for |η| > 1.5. An additional uncertainty is therefore assigned to the τ lepton scale
factors for misidentified τ leptons in this η region.

Measurements based on data are corrected by subtracting the small contributions due to prompt
τ leptons, muons, and electrons which are misidentified as τ lepton candidates using the pre-
dictions from the simulated samples. The systematic uncertainties in the correction factors
are estimated by varying the cross sections of the dominant simulated processes within their
uncertainties [55].

The resulting correction factors on the τ lepton misidentification rate are found to be in the
range of 0.6–1.1 for the four τ lepton pT regions. These weights are applied to each misidenti-
fied τ lepton candidate in all simulated background processes.

A jet originating from gluon emission has a smaller probability of being misidentified as a τh
candidate than those originating from quarks. Quarks tend to produce incorrectly assigned
τ lepton candidates with a like-sign charge. Therefore, an additional systematic uncertainty
is assigned to the correction factors based on the flavor composition of jets misidentified as τ
leptons. To determine this uncertainty, the measurement of the τ lepton misidentification rate
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is repeated for each of the charge combinations of the `τh pair, τ±h `± and τ±h `∓. Because of the
different production modes of W+and W−bosons at the LHC, the four charge combinations
have different quark and gluon compositions. An estimate of the maximally allowed variance
in the probability of each quark or gluon type to be misidentified as a τ lepton is obtained
via the comparison of the misidentification rate measurements in the four channels. The un-
certainties in the misidentification rates are scaled according to the different expected flavor
compositions in the signal and W(→ `ν)+jets enriched regions used for the misidentification
rate measurements.

5.3 Systematic uncertainties

In category A, the backgrounds due to misidentified leptons are derived from data and the
associated systematic uncertainties are calculated by propagating the uncertainties in the muon
and τ lepton prompt and misidentification probability measurements. The uncertainties in the
background rate of misidentified leptons lie in the range of 21–28% in the central channel and
21–36% in the forward channel.

In category B, the uncertainties in the correction factors on the misidentification rate of τ lep-
tons vary from 23–38% for the lower three τ lepton pT regions and up to 58–82% for the highest
pT region in the µτh and eτh channels. These uncertainties are propagated to the estimate of the
background of misidentified hadronically decaying τ leptons by varying the correction factors
applied to the simulation within their uncertainties.

Since both the signal efficiencies and the prompt-prompt contributions to the background in
category A and all the signal and background estimates in category B are determined using
simulated events, the following sources of systematic uncertainty are considered.

Normalization uncertainties of 20% are applied for tt+jets, DY+jets and diboson processes in
category A as observed in the signal-depleted region presented in Fig. 2. An uncertainty of
30% is applied for other rare SM process as motivated by the theoretical uncertainties in the
NLO cross sections for processes such as ttW, ttZ [46, 47], and triboson [50] production. For
category B, these uncertainties in the MC normalization vary in a range between 15% and 100%
according to previous measurements [55]. The CMS luminosity used in the normalization of
signal and MC samples has an uncertainty of 2.6% [56].

In order to account for uncertainties in the efficiency of τ lepton identification, an uncertainty
of 6% is applied for each prompt τ lepton found in the event. The uncertainty in the τ lepton
energy is taken into account by varying the energy of all τ leptons by ±3%. Uncertainties
induced by the energy resolution of prompt τ leptons in simulated samples are estimated by
changing the resolution by ±10%.

Muon and electron identification, isolation, and trigger efficiencies are determined with a tag-
and-probe method [57] in DY+jets enriched data. In both categories, the muon reconstruction
and isolation uncertainty is about 1% and the single muon trigger matching uncertainty is
≤0.5%. Uncertainties in electron identification, isolation, and trigger efficiencies are considered
only in the eτh channel of category B. These uncertainties are pT- and η-dependent and are
found to be 0.3% for electrons in the central detector region with pT < 50 GeV and up to 25%
for electrons with pT > 500 GeV.

Uncertainties in the jet energy resolution [27] are taken into account by changing the correction
factors within their uncertainties. These correction factors lie between 1.05 and 1.29 depending
on jet η, with corresponding uncertainties varying from 5% to 16%. The pT- and η-dependent
scale factors for the jet energy scale [27] are similarly varied by one standard deviation to obtain
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the corresponding uncertainties in simulated samples. This corresponds to a 1–3% variation of
the scale factors.

The energy scale and resolution uncertainties in τ lepton, muon, electron, and jet candidates
are also propagated in the calculation of Emiss

T and ST.

The uncertainty in the pileup re-weighting of simulated samples is estimated by varying the
total inelastic cross section [58] by 5%. Signal samples are produced with the CTEQ6L1 PDF set
and the associated PDF uncertainties in the signal acceptance are estimated using the PDF un-
certainty prescription for LHC [59–61]. In category B, the PDF uncertainties are also calculated
for the background processes estimated using simulations.

Additional uncertainties in major SM processes estimated from simulations are considered in
category B. Uncertainties in the factorization and normalization scales, µr and µf, respectively,
on tt+jets and W+jets events are calculated by changing the corresponding scales by a factor
of 2 or 0.5. The effect of an uncertainty in the jet-parton matching threshold in the simulation
of W+jets processes is evaluated by varying it within a factor of 2. The uncertainty in the top
quark pT re-weighting procedure is estimated by doubling and removing the correction factors.

Table 2 shows a summary of the systematic uncertainties for categories A and B.

Table 2: Systematic uncertainty sources and their effects on background (B) and signal (S) es-
timates. Uncertainties affecting the signal yields in both categories and the background yields
in category A are calculated using the selection criteria for the MLQ3 = 550 GeV hypothesis.
In category A, the uncertainties are reported for central/forward channels separately, where
appropriate. In category B, all uncertainties are averaged over the four pτ

T search bins. All val-
ues are symmetric except for the PDF uncertainty in the signal acceptance in category A, and
the tt factorization and normalization scale uncertainty in category B. The τ misidentification
rate uncertainties considered in category B are included in the matrix method uncertainty in
category A. All uncertainties in the background estimates are scaled according to their relative
contributions to the total expected background.

Category A Category B
µτh ch. eτh ch.

Systematic uncertainty Magnitude (%) B (%) S (%) B (%) S (%) B (%) S (%)
Integrated luminosity 2.6 0.4/1.2 2.6 2.6 2.6 2.6 2.6
Electron reco/ID/iso & trigger pT, η dependent — — — — 1.4 2.2
Muon reco/ID/iso & trigger 1.1 0.1/0.5 1.1 0.9 0.9 — —
τ lepton reco/ID/iso 6.0 0.8/2.8 6.0 1.5 3.0 0.6 3.1
Muon momentum scale & resolution pT dependent 0.1/0.3 0.4 — — — —
τ lepton energy scale 3.0 1.2/4.1 2.0 2.3 2.7 0.6 1.5
τ lepton energy resolution 10.0 0.2/0.8 0.9 1.2 1.3 0.2 0.1
Jet energy scale pT, η dependent 0.9/3.2 1.9 4.2 1.9 5.6 2.7
Jet energy resolution η dependent 0.4/1.2 1.0 0.8 0.3 1.6 0.8
Pileup 5.0 0.1/1.2 1.0/2.5 0.8 0.3 0.9 0.5
PDF (on acceptance) — — +2.9

−4.3

/
+2.4
−6.2 — 0.7 — 0.9

PDF (on background) — — — 8.7 — 8.3 —
Matrix method — 23.1/15.3 — — — — —
Jet→ τ misidentification rate pT dependent — — 8.2 1.0 10.9 0.8
e→ τ misidentification rate η dependent — — 0.1 0.1 0.1 0.1
tt factorization/renormalization +100

−50 — — +6.1
−5.9 — +2.9

−2.7 —
Top quark pT re-weighting pT dependent — — 0.1 — 0.1 —
W+jets factorization/renormalization +100

−50 — — 4.3 — 0.3 —
W+jets matching threshold +100

−50 — — 1.3 — 2.5 —
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6 Results
The search results for category A (B) are presented in Table 3 (4 and 5). Figures 4 and 5 show
the comparison of data and the predicted backgrounds as a function of ST, τ lepton pT, and
jet multiplicity parameters. The dashed curves show the expectation for LQ signals. For the
comparison of expected and observed number of events in Tables 3–5 and Figs. 4–5, Z-scores
are used. These are computed taking into account the total uncertainty in the mean number of
expected events. A unit Z-score, |Z| = 1, refers to a two-tailed 1-standard deviation quantile
(∼68%) of the normal distribution. For each selection, the observed number of events is found
to be in an overall agreement with the SM-only hypothesis and the distributions reveal no
statistically significant deviations from the SM expectations.

A limit is set on the pair production cross section of charge −1/3 third-generation scalar LQs
by using a combined likelihood fit in the ten search regions of category A and B. The theta
tool [62] is used to produce Bayesian limits on the signal cross section, where the statistical and
systematic uncertainties are treated as nuisance parameters. Statistical and systematic uncer-
tainties that are specific to category A or B, such as the uncertainties in the backgrounds from
misidentified leptons, are assumed to be uncorrelated, whereas common sources of systematic
uncertainties are treated as fully correlated. The common uncertainties are the uncertainties in
the jet energy scale and resolution, τ lepton and muon identification and isolation efficiencies,
τ lepton energy scale and resolution, PDFs, and integrated luminosity.

The observed and expected exclusion limits as a function of the LQ mass are shown in Fig. 6.
Assuming a unit branching fraction of LQ decays to top quark and τ lepton pairs, pair pro-
duction of third-generation LQs is excluded for masses up to 685 GeV with an expected limit
of 695 GeV. The exclusion limits worsen as the LQ3 mass approaches the mass of the top quark
because the LQ3 decay products become softer. At MLQ3 = 200 GeV, more than 90% of τ lep-
tons originating from LQ3 decays have pT < 60 GeV, which causes a decrease both in the signal
selection efficiency and the discriminating performance of the τ lepton pT spectrum. Therefore,
no exclusion limits are quoted for masses below 200 GeV.

Branching fraction dependent exclusion limits are presented in Fig. 6 (lower right), where limits
on the complementary LQ3 → bν (β = 0) decay channel are also included. The results for
β = 0 are obtained via reinterpretation of a search for pair produced bottom squarks [17]
with subsequent decays into b quark and neutralino pairs, in the limit of vanishing neutralino
masses. In a statistical combination of this analysis with the search for bottom squarks, third-
generation scalar LQs are also excluded for masses below 700 GeV for β = 0 and for masses
below 560 GeV over the full β range. If upper limits on β are to be used to constrain the lepton-
quark-LQ Yukawa couplings, λbν and λtτ, kinematic suppression factors that favor bν decay
over the tτ have to be considered as well as the relative strengths of the two Yukawa couplings
[12, 13].

Additionally, the results presented here for the third-generation scalar LQs are directly reinter-
preted in the context of pair produced bottom squarks decaying into top quark and τ lepton
pairs. Thus, pair production of bottom squarks where the decay mode is dominated by the
RPV coupling λ′333 is also excluded up to a bottom squark mass of 685 GeV.



13

Table 3: Category A search results in the signal region for several LQ3 mass hypotheses. The
τ lepton pT and ST columns represent the optimized thresholds defined in Section 4.1. The
corresponding expected number of prompt-prompt and total background events, as well as
the observed number of data events are listed as NPP

Bkg, total NExp
Bkg , and NObs. The statistical

and systematic uncertainties quoted in the expected number of background events are com-
binations of misidentified lepton and prompt-prompt components. The εLQ3 is the expected
signal efficiency at a given LQ3 mass with respect to the total number of expected LQ3 signal
events at

√
s = 8 TeV with a µτh pair of any charge combination. No expected signal efficiency

for MLQ3 = 200 GeV is reported in the forward channel since the associated yield in the signal
sample was measured to be zero.

MLQ3 pτ
T ST NPP

Bkg Total NExp
Bkg NObs Z-score NExp

LQ3
εLQ3

(GeV) (GeV) (GeV) ± (stat) ± (stat)± (syst) ± (stat) (%)

Central channel: |̃η| < 0.9
200 35 410 8.5± 1.0 128± 5± 25 105 −1.0 53± 21 0.04
250 35 410 8.5± 1.0 128± 5± 25 105 −1.0 252± 24 0.58
300 50 470 4.2± 0.5 39.9± 2.9± 8.3 27 −1.5 153± 11 0.98
350 50 490 4.0± 0.5 34.6± 2.7± 7.1 25 −1.2 92.4± 5.6 1.45
400 65 680 0.9± 0.2 7.2± 1.2± 1.7 4 −1.0 28.4± 2.1 1.00
450 65 700 0.8± 0.2 6.3± 1.1± 1.6 4 −0.8 17.3± 1.1 1.27
500 65 770 0.5± 0.2 3.2± 0.8± 0.8 4 +0.5 9.8± 0.6 1.43
550 65 800 0.4± 0.1 2.7± 0.8± 0.6 4 +0.7 6.1± 0.3 1.71
600 65 850 0.2± 0.1 1.8± 0.6± 0.4 3 +0.9 3.6± 0.2 1.85
650 65 850 0.2± 0.1 1.8± 0.6± 0.4 3 +0.9 2.2± 0.1 1.99
700 85 850 0.1± 0.1 1.1± 0.5± 0.3 2 +0.8 1.3± 0.1 2.02
750 85 850 0.1± 0.1 1.1± 0.5± 0.3 2 +0.8 0.8± 0.1 2.20
800 85 850 0.1± 0.1 1.1± 0.5± 0.3 2 +0.8 0.5± 0.1 2.80

Forward channel: |̃η| ≥ 0.9
200 35 410 4.2± 0.5 72± 4± 15 87 +1.1 — —
250 35 410 4.2± 0.5 72± 4± 15 87 +1.1 50± 11 0.11
300 50 470 1.8± 0.3 20.3± 2.2± 3.9 23 +0.5 33.4± 5.2 0.21
350 50 490 1.7± 0.3 18.2± 2.0± 3.5 19 +0.2 18.5± 2.5 0.29
400 65 680 0.7± 0.2 2.7± 0.7± 0.6 1 −0.9 6.1± 1.0 0.21
450 65 700 0.7± 0.2 2.3± 0.6± 0.4 1 −0.7 3.8± 0.5 0.28
500 65 770 0.5± 0.1 1.2± 0.4± 0.2 1 0.0 1.6± 0.2 0.24
550 65 800 0.4± 0.1 0.9± 0.4± 0.2 1 +0.3 1.2± 0.2 0.32
600 65 850 0.3± 0.1 0.6± 0.3± 0.1 1 +0.6 0.6± 0.1 0.29
650 65 850 0.3± 0.1 0.6± 0.3± 0.1 1 +0.6 0.3± 0.1 0.26
700 85 850 0.1± 0.1 0.4± 0.2± 0.1 0 −0.4 0.2± 0.1 0.28
750 85 850 0.1± 0.1 0.4± 0.2± 0.1 0 −0.4 0.1± 0.1 0.35
800 85 850 0.1± 0.1 0.4± 0.2± 0.1 0 −0.4 0.1± 0.1 0.36
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Table 4: Category B search results for the four pτ
T search regions of the µτh channel. All expected

values for background and signal processes (LQ3 masses indicated in parentheses) are reported
with the corresponding statistical and systematic uncertainties. The expected signal efficiency
εLQ3 at a given LQ3 mass is determined with respect to the total number of expected LQ3 signal
events at

√
s = 8 TeV with a µτh pair of any charge combination, and εLQ3 is reported separately

for opposite-sign (OS) and same-sign (SS) µτh events.

Process pτ
T < 60 GeV 60 < pτ

T < 120 GeV 120 < pτ
T < 200 GeV pτ

T > 200 GeV
εLQ3 (%)

OS SS

LQ3 (200 GeV) 21± 12+7
−2 0.0± 0.1± 0.0 0.0± 0.1± 0.1 0.0± 0.1± 0.1 0.01 0

LQ3 (250 GeV) 31.0± 8.2+6.6
−3.4 13.1± 5.5+1.1

−2.9 0.0± 0.1± 0.1 0.0± 0.1± 0.1 0.09 0.02

LQ3 (300 GeV) 33.1± 5.3+2.8
−3.8 24.6± 4.6+2.8

−2.1 7.6± 2.6+1.1
−1.7 3.9± 1.8+0.9

−0.3 0.35 0.08

LQ3 (350 GeV) 18.1± 2.6+1.8
−1.4 13.3± 2.2+1.0

−1.1 7.2± 1.6+0.8
−0.7 2.9± 0.9+0.5

−1.4 0.57 0.08

LQ3 (400 GeV) 13.9± 1.4+1.1
−2.6 13.4± 1.4+1.0

−1.1 7.8± 1.1+0.8
−0.6 4.1± 0.8+0.6

−0.8 1.30 0.12

LQ3 (450 GeV) 10.1± 0.9+0.8
−1.9 8.6± 0.8+0.8

−0.8 7.1± 0.7+0.5
−0.6 5.8± 0.6+0.7

−0.6 2.05 0.27

LQ3 (500 GeV) 5.2± 0.4+0.5
−0.9 6.0± 0.5± 0.5 5.3± 0.4+0.4

−0.5 4.4± 0.4+0.7
−0.5 2.75 0.27

LQ3 (550 GeV) 3.2± 0.3+0.3
−0.6 4.4± 0.3+0.4

−0.3 4.3± 0.3+0.5
−0.4 4.0± 0.3± 0.4 4.04 0.36

LQ3 (600 GeV) 2.0± 0.1+0.2
−0.5 2.7± 0.2± 0.2 2.7± 0.2± 0.2 3.5± 0.2± 0.4 5.11 0.43

LQ3 (650 GeV) 1.3± 0.1+0.1
−0.3 1.8± 0.1+0.1

−0.2 2.0± 0.1± 0.2 2.5± 0.1+0.3
−0.2 6.07 0.67

LQ3 (700 GeV) 0.7± 0.1± 0.1 1.1± 0.1± 0.1 1.1± 0.1± 0.1 1.6± 0.1+0.2
−0.1 6.66 0.57

LQ3 (750 GeV) 0.4± 0.1± 0.1 0.5± 0.1± 0.1 0.7± 0.1± 0.1 1.1± 0.1± 0.1 6.71 0.59

LQ3 (800 GeV) 0.2± 0.1± 0.1 0.4± 0.1± 0.1 0.5± 0.1± 0.1 0.8± 0.1± 0.1 7.77 0.61

tt+jets 29.9± 2.9+7.3
−7.2 8.8± 1.3+3.2

−3.4 1.7± 0.6+0.6
−0.6 0.4± 0.3+0.9

−0.4

W+jets 7.4± 1.7+5.1
−5.1 0.6± 0.5± 0.6 0.0± 0.1± 0.1 0.4± 0.4± 0.4

DY+jets 4.8± 0.7± 2.5 1.8± 0.4+1.1
−0.9 0.5± 0.2± 0.3 0.4± 0.2± 0.2

Other backgrounds 3.1± 0.9+1.8
−1.9 0.2± 0.1+0.8

−0.3 0.2± 0.1± 0.4 0.1± 0.1+0.1
−0.2

Total NExp
Bkg 45.2± 3.5+9.4

−9.3 11.5± 1.4+3.4
−3.6 2.5± 0.6± 0.8 1.2± 0.5+1.0

−0.6

NObs 44 15 1 0

Z-score −0.1 +0.7 +0.8 −1.0
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Table 5: Category B search results for the four pτ
T search regions of the eτh channel. All expected

values for background and signal processes (LQ3 masses indicated in parentheses) are reported
with the corresponding statistical and systematic uncertainties. The expected signal efficiency
εLQ3 at a given LQ3 mass is determined with respect to the total number of expected LQ3 signal
events at

√
s = 8 TeV with an eτh pair of any charge combination.

Process pτ
T < 60 GeV 60 < pτ

T < 120 GeV 120 < pτ
T < 200 GeV pτ

T > 200 GeV εLQ3

LQ3 (200 GeV) 32± 19+6
−4 0.1± 0.1± 0.1 0.0± 0.1± 0.1 0.0± 0.1± 0.1 0.02

LQ3 (250 GeV) 33.3± 8.7+8.2
−5.8 11.9± 5.3+2.6

−2.4 0.0± 0.1± 0.1 0.0± 0.1± 0.1 0.16

LQ3 (300 GeV) 31.9± 5.2+3.2
−9.1 27.7± 4.6+3.9

−4.4 4.2± 1.9+1.1
−0.3 2.7± 1.6+0.2

−0.3 0.70

LQ3 (350 GeV) 19.6± 2.6+2.7
−3.6 19.6± 2.5+2.0

−2.1 8.6± 1.7+1.4
−0.8 4.7± 1.3± 0.5 1.35

LQ3 (400 GeV) 12.7± 1.4+1.7
−2.6 14.6± 1.5+2.0

−1.4 8.1± 1.1+1.2
−1.3 4.8± 0.9+0.6

−0.4 2.22

LQ3 (450 GeV) 7.8± 0.7+1.3
−1.4 10.1± 0.9+0.9

−1.1 7.2± 0.7+1.0
−0.7 5.5± 0.6+0.6

−0.8 3.65

LQ3 (500 GeV) 4.8± 0.4+0.5
−1.2 7.3± 0.5+0.8

−0.9 5.5± 0.4± 0.6 5.2± 0.4+0.7
−0.6 5.34

LQ3 (550 GeV) 3.3± 0.2+0.4
−1.0 4.3± 0.3± 0.4 4.4± 0.3± 0.4 4.3± 0.3± 0.5 7.28

LQ3 (600 GeV) 1.9± 0.1+0.2
−0.6 2.9± 0.2± 0.3 3.2± 0.2± 0.3 3.6± 0.2± 0.4 9.61

LQ3 (650 GeV) 1.2± 0.1+0.1
−0.4 1.8± 0.1± 0.2 2.0± 0.1± 0.2 2.4± 0.1+0.3

−0.3 10.89

LQ3 (700 GeV) 0.7± 0.1+0.1
−0.2 1.1± 0.1± 0.1 1.5± 0.1± 0.1 1.9± 0.1± 0.2 13.11

LQ3 (750 GeV) 0.4± 0.1± 0.1 0.7± 0.1± 0.1 0.7± 0.1± 0.1 1.4± 0.1+0.1
−0.2 13.84

LQ3 (800 GeV) 0.2± 0.1± 0.1 0.4± 0.1± 0.1 0.5± 0.1± 0.1 0.9± 0.1± 0.1 14.82

tt+jets 27.7± 2.4± 7.7 7.5± 1.2+2.1
−2.8 0.9± 0.4± 0.3 0.1± 0.1+0.6

−0.1

W+jets 8.5± 1.8+5.3
−5.4 1.1± 0.6+0.6

−0.7 0.0± 0.1± 0.1 0.0± 0.1± 0.1

DY+jets 4.4± 0.7+2.3
−2.4 1.4± 0.4+0.8

−0.7 0.6± 0.2± 0.3 0.2± 0.1± 0.1

Other backgrounds 3.5± 1.0+2.5
−3.0 1.1± 0.5+0.7

−0.8 0.2± 0.1± 0.2 0.4± 0.3± 0.2

Total NExp
Bkg 44.1± 3.2+10.0

−10.1 11.0± 1.5+2.5
−3.1 1.6± 0.5± 0.5 0.7± 0.4+0.7

−0.3

NObs 53 5 4 1

Z-score +0.8 −1.2 +1.1 +0.1
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Figure 4: The ST, τ lepton pT, and jet multiplicity distributions in the signal region of category
A for central (left column) and forward (right column) channels, using the optimized selection
for MLQ3 = 200 GeV (all other optimized selection criteria yield events that are a subset of
this selection). The rightmost bin of each distribution includes overflow and no statistically
significant excess is observed in the suppressed bins. The systematic uncertainty for each bin of
these distributions is determined independently. Shaded regions in the histograms represent
the total statistical and systematic uncertainty in the background expectation. The Z-score
distribution is provided at the bottom of each plot.
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Figure 5: The leading τ lepton pT, ST, and jet multiplicity distributions in the signal region
of category B for µτh (left column) and eτh (right column) channels. The rightmost bin of
each distribution includes overflow and no statistically significant excess is observed in the
suppressed bins. Shaded regions in the histograms represent the total statistical and systematic
uncertainty in the background expectation. The Z-score distribution is provided at the bottom
of each plot. The four regions of the τ lepton pT correspond to the four search regions.
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Figure 6: The expected and observed exclusion limits at 95% CL on the LQ3 pair production
cross section times β2 in category A (upper left), category B (upper right) and the combination
of the two categories (lower left). The theoretical uncertainty in the LQ pair production cross
section includes the PDF and renormalization/factorization scale uncertainties as prescribed in
Ref. [19]. The expected and observed limits on the LQ branching fraction β as a function of the
LQ mass (lower right). The total excluded region (shaded) is obtained by including the results
in Ref. [17], reinterpreted for the LQ3 → bν scenario.
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7 Summary
A search for pair produced, charge −1/3, third-generation scalar leptoquarks decaying to top
quark and τ lepton pairs has been conducted in the `τh channel with two or more jets, using
a proton-proton collisions data sample collected with the CMS detector at

√
s = 8 TeV corre-

sponding to an integrated luminosity of 19.7 fb−1. No statistically significant excess is observed
over the SM background expectations. Assuming that all leptoquarks decay to a top quark and
a τ lepton, the pair production of charge−1/3, third-generation scalar leptoquarks is excluded
at 95% CL for masses up to 685 GeV (695 GeV expected). This constitutes the first direct result
for leptoquarks decaying in this channel, and the mass limit is also directly applicable to pair
produced bottom squarks decaying via the RPV coupling λ′333.
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Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi,
Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,
A. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece
I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Loukas, N. Manthos, I. Papadopoulos,
E. Paradas, J. Strologas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, A. Hazi, P. Hidas, D. Horvath17, F. Sikler, V. Veszpremi, G. Vesztergombi18,
A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi19, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
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27: Also at Università degli Studi di Siena, Siena, Italy
28: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
29: Also at Purdue University, West Lafayette, USA
30: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
31: Also at Institute for Nuclear Research, Moscow, Russia
32: Also at Institute of High Energy Physics and Informatization, Tbilisi State University,
Tbilisi, Georgia
33: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
34: Also at National Research Nuclear University ’Moscow Engineering Physics
Institute’ (MEPhI), Moscow, Russia
35: Also at California Institute of Technology, Pasadena, USA
36: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
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